Contraction-stimulated glucose transport in rat skeletal muscle is sustained despite reversal of increased PAS-phosphorylation of AS160 and TBC1D1.

نویسندگان

  • Katsuhiko Funai
  • Gregory D Cartee
چکیده

Akt substrate of 160 kDa (AS160), the most distal insulin signaling protein known to be important for insulin-stimulated glucose transport, becomes phosphorylated with skeletal muscle contraction. Akt, AMP-activated protein kinase (AMPK), and Ca(2+)/calmodulin-dependent kinase II (CaMKII) have been implicated in regulating AS160 and/or glucose transport. Our primary aim was to assess time courses for contraction's effects on glucose transport and phosphorylation of Akt, AMPK, CaMKII, and AS160. Isolated rat epitrochlearis muscles were studied without or with contraction (5, 10, 20, 40, 60 min). Phospho-Akt substrate (PAS) antibody was used to measure AS160 PAS phosphorylation by quantifying the approximately 160-kDa band on PAS immunoblots (PAS-160); a separate band at 150 kDa (PAS-150) that responded similarly to contraction was also identified. Using specific antibodies for AS160 or TBC1D1 on immunoblots, the molecular mass of PAS-160 was found to correspond with that of AS160 and not TBC1D1, whereas PAS-150 corresponded with TBC1D1 and not AS160. Furthermore, supernatant of sample immunodepleted with anti-AS160 had greatly reduced PAS-160, whereas supernatant of sample immunodepleted with anti-TBC1D1 had greatly reduced PAS-150, providing further evidence that PAS-160 and PAS-150 correspond with PAS-AS160 and PAS-TBC1D1, respectively. Contraction induced transient increases in PAS-160, PAS-150, phospho-glycogen synthase kinase 3 (an Akt substrate) and phospho-CaMKII; glucose transport and phospho-AMPK increases were maintained for 60 min of contraction. These data suggest the following: 1) PAS-160 (AS160) and PAS-150 (TBC1D1) respond to contraction transiently, despite sustained stimulation; 2) continual AMPK activation was insufficient for sustained increase in PAS-160 or PAS-150; and 3) sustained elevation of PAS-160 or PAS-150 was unnecessary to maintain contraction-stimulated glucose transport for up to 60 min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Contraction-Stimulated AMP-Activated Protein Kinase Inhibits Contraction-Stimulated Increases in PAS-TBC1D1 and Glucose Transport Without Altering PAS-AS160 in Rat Skeletal Muscle

OBJECTIVE Phosphorylation of two members of the TBC1 domain family of proteins, Akt substrate of 160 kDa (AS160, also known as TBC1D4) and TBC1D1, has been implicated in the regulation of glucose transport in skeletal muscle. Insulin-stimulated phosphorylation (measured using the phospho-Akt substrate [PAS] antibody) of AS160 and TBC1D1 appears to occur in an Akt-dependent manner, but the kinas...

متن کامل

Increased AS160 phosphorylation, but not TBC1D1 phosphorylation, with increased postexercise insulin sensitivity in rat skeletal muscle.

A single exercise bout can increase insulin-independent glucose transport immediately postexercise and insulin-dependent glucose transport (GT) for several hours postexercise. Akt substrate of 160 kDa (AS160) and TBC1D1 are paralog Rab GTPase-activating proteins that have been proposed to contribute to these exercise effects. Previous research demonstrated greater AS160 and Akt threonine phosph...

متن کامل

ThrAla-AS160 knock-in mutation does not impair contraction/ AICAR-induced glucose transport in mouse muscle

Ducommun S, Wang HY, Sakamoto K, MacKintosh C, Chen S. ThrAla-AS160 knock-in mutation does not impair contraction/ AICAR-induced glucose transport in mouse muscle. Am J Physiol Endocrinol Metab 302: E1036–E1043, 2012. First published February 7, 2012; doi:10.1152/ajpendo.00379.2011.—AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulinand contraction-stimul...

متن کامل

Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle.

AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-T...

متن کامل

Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle.

The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2008